This guide explains how to use the Faasera Synthetic Data module to generate safe, realistic, and lineage-aware test data for development, analytics, and QA use cases.
Faasera Synthetic Data Generator allows users to:
| Feature | Description |
|---|---|
| Seed-Based Generation | Uses seed files for deterministic or constrained value sets. |
| Field-Aware Logic | Applies domain-specific generation (e.g., names, dates, credit cards). |
| Lineage Consistency | Ensures synthetic data is relationally consistent across joins. |
| Custom Rule Support | Define custom generators for business-specific entities. |
| Generator Type | Use Case Example | Notes |
|---|---|---|
FAKE_NAME |
First/Last names | Locale-aware |
FAKE_EMAIL |
Email addresses | Optional domain control |
FAKE_DATE |
Birthdates, registration dates | With configurable range |
FAKE_CREDIT_CARD |
Dummy card numbers (Luhn-valid) | Brand-specific supported |
SEED_BASED |
From seed file with column constraints | Deterministic or random from list |
CUSTOM_LOGIC |
Regex or lookup-based | Requires plugin or lambda function support |
Synthetic data generation is governed by the masking policy, using maskFunction.type = GENERATE.
{
"columnRules": {
"email": {
"maskFunction": {
"type": "FAKE_EMAIL"
}
},
"customer_type": {
"maskFunction": {
"type": "SEED_BASED",
"seedFileName": "customer_type.csv",
"seedSeparator": ",",
"seedFieldPosition": 0
}
}
}
}
You can control generation using:
| Mode | Description |
|---|---|
| In-place | Replace original column values in source DB |
| Source → Target | Populate a new database or table with synthetic data |
| Standalone | Generate data samples without an original dataset |
| Scenario | Synthetic Approach |
|---|---|
| Load testing with fake users | FAKE_NAME + FAKE_EMAIL |
| Sensitive system without masking | GENERATE mode for all PII |
| Replace all values with lineage | SEED_BASED + Referential Map |
| Generate GDPR/CCPA-compliant datasets | CUSTOM_LOGIC + audit trail |
Input Row:
{
"name": "John Smith",
"email": "john@real.com",
"dob": "1980-01-01"
}
After Generation:
{
"name": "Alice Williams",
"email": "alice@testmail.io",
"dob": "1994-09-23"
}
maskKeyColumn + compositeKeyColumn mapping.SEED_BASED generation to ensure test consistency.nullProbability for realism.masking and generation in hybrid environments.For advanced setup or consulting, contact the Faasera team at www.faasera.ai