Faasera Documentation

Faasera Synthetic Data Generation — User Guide

This guide explains how to use the Faasera Synthetic Data module to generate safe, realistic, and lineage-aware test data for development, analytics, and QA use cases.


Overview

Faasera Synthetic Data Generator allows users to:


Key Features

Feature Description
Seed-Based Generation Uses seed files for deterministic or constrained value sets.
Field-Aware Logic Applies domain-specific generation (e.g., names, dates, credit cards).
Lineage Consistency Ensures synthetic data is relationally consistent across joins.
Custom Rule Support Define custom generators for business-specific entities.

Supported Generator Types

Generator Type Use Case Example Notes
FAKE_NAME First/Last names Locale-aware
FAKE_EMAIL Email addresses Optional domain control
FAKE_DATE Birthdates, registration dates With configurable range
FAKE_CREDIT_CARD Dummy card numbers (Luhn-valid) Brand-specific supported
SEED_BASED From seed file with column constraints Deterministic or random from list
CUSTOM_LOGIC Regex or lookup-based Requires plugin or lambda function support

Configuration Options

Synthetic data generation is governed by the masking policy, using maskFunction.type = GENERATE.

Example Policy Snippet

{
  "columnRules": {
    "email": {
      "maskFunction": {
        "type": "FAKE_EMAIL"
      }
    },
    "customer_type": {
      "maskFunction": {
        "type": "SEED_BASED",
        "seedFileName": "customer_type.csv",
        "seedSeparator": ",",
        "seedFieldPosition": 0
      }
    }
  }
}

Runtime Hints (Optional)

You can control generation using:


Integration Modes

Mode Description
In-place Replace original column values in source DB
Source → Target Populate a new database or table with synthetic data
Standalone Generate data samples without an original dataset

Usage Scenarios

Scenario Synthetic Approach
Load testing with fake users FAKE_NAME + FAKE_EMAIL
Sensitive system without masking GENERATE mode for all PII
Replace all values with lineage SEED_BASED + Referential Map
Generate GDPR/CCPA-compliant datasets CUSTOM_LOGIC + audit trail

Sample Output

Input Row:

{
  "name": "John Smith",
  "email": "john@real.com",
  "dob": "1980-01-01"
}

After Generation:

{
  "name": "Alice Williams",
  "email": "alice@testmail.io",
  "dob": "1994-09-23"
}

Compliance Notes


Best Practices


For advanced setup or consulting, contact the Faasera team at www.faasera.ai