Faasera Documentation

🔄 Faasera Transformation Guide

The Faasera Transformation Engine provides flexible and policy-driven data transformations, enabling clean, consistent, and anonymized datasets for AI/ML pipelines, data migration, and integration workflows. This guide walks through its key capabilities, configuration, and usage patterns.


Key Capabilities

Capability Description
Column-level transformation Apply functions like uppercase, trim, format, concat, regex replace.
Derived field generation Generate new columns using expressions or lookup rules.
Policy-driven mapping Define reusable transformations for known source systems or schemas.
Conditional logic Apply rules based on data values, column patterns, or data type heuristics.
Integration-ready output Output transformed data to any supported sink (e.g., RDBMS, Snowflake).

When to Use Transformation


How It Works

               +-----------------------+
               |  Source Data (Raw)    |
               +-----------------------+
                          |
                          â–¼
                Faasera Transformation Engine
                          |
         +----------------+----------------+
         |                                 |
     Transform Policies                Lookup Tables
         |                                 |
         â–¼                                 â–¼
 +-----------------+              +------------------+
 | Column Mapping  |              | Derived Field Gen|
 | Regex / Format  |              | Conditional Rules|
 +-----------------+              +------------------+
                          |
                          â–¼
               +------------------------+
               |  Transformed Output    |
               | (Masked or Cleaned)    |
               +------------------------+

Configuring Transformations

Transformations are defined in the policy JSON under a transformation section.

Example:

"transformation": {
  "enabled": true,
  "rules": [
    {
      "column": "birthdate",
      "action": "FORMAT_DATE",
      "fromFormat": "MM/dd/yyyy",
      "toFormat": "yyyy-MM-dd"
    },
    {
      "column": "customer_name",
      "action": "UPPERCASE"
    },
    {
      "column": "location",
      "action": "REPLACE",
      "pattern": "NY",
      "replacement": "New York"
    }
  ]
}

Supported Transformation Actions

Action Description
TRIM Remove leading/trailing whitespace
UPPERCASE Convert string to uppercase
LOWERCASE Convert string to lowercase
FORMAT_DATE Change date format (requires fromFormat, toFormat)
REPLACE Replace substrings using regex
CONCAT Concatenate multiple columns
MASK_IF_NULL Apply masking only if column is null or empty
MAP_LOOKUP Replace value using external lookup (e.g., JSON dictionary)
CUSTOM_EXPR Apply transformation using expression engine (advanced)

Best Practices


Integration with Other Modules


Output Destinations

Transformed data can be sent to:


Example Use Case

You want to anonymize customer records by:

  1. Formatting date of birth
  2. Cleaning and uppercasing names
  3. Replacing codes with friendly values

Resulting Output:

Input Name Input DOB Code → Output Name Output DOB Output Location
John Doe 12/31/1985 NY → JOHN DOE 1985-12-31 New York

Need help building your transformation policies?

Contact the Faasera team at www.faasera.ai for onboarding assistance.