The Faasera Transformation Engine provides flexible and policy-driven data transformations, enabling clean, consistent, and anonymized datasets for AI/ML pipelines, data migration, and integration workflows. This guide walks through its key capabilities, configuration, and usage patterns.
| Capability | Description |
|---|---|
| Column-level transformation | Apply functions like uppercase, trim, format, concat, regex replace. |
| Derived field generation | Generate new columns using expressions or lookup rules. |
| Policy-driven mapping | Define reusable transformations for known source systems or schemas. |
| Conditional logic | Apply rules based on data values, column patterns, or data type heuristics. |
| Integration-ready output | Output transformed data to any supported sink (e.g., RDBMS, Snowflake). |
MM/DD/YYYY to YYYY-MM-DD) +-----------------------+
| Source Data (Raw) |
+-----------------------+
|
â–¼
Faasera Transformation Engine
|
+----------------+----------------+
| |
Transform Policies Lookup Tables
| |
â–¼ â–¼
+-----------------+ +------------------+
| Column Mapping | | Derived Field Gen|
| Regex / Format | | Conditional Rules|
+-----------------+ +------------------+
|
â–¼
+------------------------+
| Transformed Output |
| (Masked or Cleaned) |
+------------------------+
Transformations are defined in the policy JSON under a transformation section.
"transformation": {
"enabled": true,
"rules": [
{
"column": "birthdate",
"action": "FORMAT_DATE",
"fromFormat": "MM/dd/yyyy",
"toFormat": "yyyy-MM-dd"
},
{
"column": "customer_name",
"action": "UPPERCASE"
},
{
"column": "location",
"action": "REPLACE",
"pattern": "NY",
"replacement": "New York"
}
]
}
| Action | Description |
|---|---|
TRIM |
Remove leading/trailing whitespace |
UPPERCASE |
Convert string to uppercase |
LOWERCASE |
Convert string to lowercase |
FORMAT_DATE |
Change date format (requires fromFormat, toFormat) |
REPLACE |
Replace substrings using regex |
CONCAT |
Concatenate multiple columns |
MASK_IF_NULL |
Apply masking only if column is null or empty |
MAP_LOOKUP |
Replace value using external lookup (e.g., JSON dictionary) |
CUSTOM_EXPR |
Apply transformation using expression engine (advanced) |
FORMAT_DATE before masking to ensure date consistencyTRIM + UPPERCASE to normalize text for entity matchingCUSTOM_EXPR unless performance trade-offs are acceptableTransformed data can be sent to:
You want to anonymize customer records by:
Resulting Output:
| Input Name | Input DOB | Code | → | Output Name | Output DOB | Output Location |
|---|---|---|---|---|---|---|
| John Doe | 12/31/1985 | NY | → | JOHN DOE | 1985-12-31 | New York |
Need help building your transformation policies?
Contact the Faasera team at www.faasera.ai for onboarding assistance.